When you think ASP, think...
Recent Articles
All Articles
ASP.NET Articles
ASPFAQs.com
Message Board
Related Web Technologies
User Tips!
Coding Tips

Sections:
Sample Chapters
Commonly Asked Message Board Questions
JavaScript Tutorials
MSDN Communities Hub
Official Docs
Security
Stump the SQL Guru!
XML Info
Information:
Feedback
Author an Article
ASP ASP.NET ASP FAQs Message Board Feedback
Print this page.
Published: Wednesday, October 11, 2000

SQL Server Lock Contention Tamed: The Joys Of NOLOCK and ROWLOCK

By Michael Balloni


Locking
Relational databases like Microsoft's SQL Server use locks to prevent multiple users from making conflicting modifications to a set of data: when a set of data is locked by a user, no other users can modify that same set of data until the first user finishes modifying the data and relinquishes the lock. There are exceptions, but let's not go there.

- continued -

'

Some databases - SQL Server included - use locks to prevent users from seeing uncommitted modifications. In these systems, if UserA is modifying some set of data, UserB and all the rest of the users must wait until UserA is done modifying that data before UserB can get a shot at even reading the data, let alone modifying it.

Databases place locks at all levels of their physical hierarchies: rows, pages (typically a few KB of rows), extents (typically a few pages), entire tables, and entire databases. Some databases (Oracle, others?) only use fine-grained row locks, others don't do row locks at all and only allow rough-grained page, extent, table, and database locks. Most databases - SQL Server included - support row locking, but often use rough-grained locks. This is because lock management is a royal pain. Locks aren't small or simple entities, so if you only do row-level locking, you can get yourself into a world of pain: a million-row update can easily swamp memory and be a bear to manage.

Lock Contention Described
Databases that don't do just row-level locking often use a technique called lock escalation to achieve better performance. Unless its clear from the outset that a whole table will be modified, these databases start off using row locks, and they make plans to trade these locks in for rough-grained locks later if too many rows are modified.

Unfortunately, lock escalation introduces and amplifies a whole new problem: deadlock. If two users try to modify semantically-unrelated but physically-near data in two separate tables in reverse order, both users will start off with row locks, then try to upgrade them to page locks, and the situation will be that each user wants something the other user has, so they're stuck. This is deadlock.

For example:

  • UserA modifies some rows in TableA, causing a page lock affecting not just the rows UserA modified, but many others
  • UserB modifies some rows in TableB, causing a page lock affecting not just the rows UserA modified, but many others
  • UserA wants to modify some rows that UserB has locked (but not modified) in TableB
  • UserB wants to modify - or maybe just access - some rows that UserA has locked (but not modified) in TableA.

Something's gotta give. To deal with this problem, the database occasionally looks for deadlocks, and kills off one of the transactions so the other can finish. It usually kills the one that's made the least modifications so that it minimizes the cost of rolling back changes. Databases that use only row-level locking almost never have this problem because two users rarely want to modify the exact same row, and even more rarely do they attain locks in the perfectly poor order needed to cause deadlock.

Also, databases like this use lock timeouts to prevent users from waiting too long for a lock. Query timeouts also factor in here. You can write code to retry queries that timeout, but this only automates database congestion. Any timeout that is often reached will only serve to worsen the user experience. Things simply should not take that long.

In practice and under high load, SQL Server's locking system - which is based on lock escalation - does not perform well. Why? Lock contention. Lock contention is the problems of deadlock and waiting for locks. In a system in which many users are modifying the database at once, and many more users are trying to access the database concurrently, the locks are flying, users spend a lot of time waiting to attain locks, deadlocks are frequent, and users are far from happy.

Granted, if you've only got a few occasional users you won't have much trouble with SQL Server's out-of-the-box behavior. You'll be hard pressed to see these problems with simple in-the-office tests or deployments involving just a few users. But throw a couple hundred concurrent users at your database and a constant stream of INSERTS and UPDATES with quite a few DELETEs sprinkled in, and you'll start reading Oracle literature and eyeing your war chest. However, I've got a solution for you that will only cost you a code review, a few minor tweaks, and a system test. You do have a system test procedure in place, right?

Lock Contention Solved
If you used Streamload.com at all during June, July, and August, you probably got a "You were the deadlock loser" error, or a "Lock timeout" error, or an "Object required" error. These were all caused by lock contention. After scouring the documentation and talking to a few people, I learned what I summarized above and will say again here:

  • SQL Server starts with row-level locks, but often escalates these to page and table locks, causing deadlocks
  • SQL Server requires locks for reading from the database (SELECTs), so even folks not trying to modify the database are affected by the lock system.

Fortunately, I stumbled across some obscure keywords from the SQL Server lexicon: NOLOCK and ROWLOCK. They are used like this:

SELECT COUNT(UserID)
FROM Users WITH (NOLOCK)
WHERE Username LIKE 'foobar'

and

UPDATE Users WITH (ROWLOCK)
SET Username = 'fred' WHERE Username = 'foobar'

What do these extra incantations do? We'll examine these two hints - NOLOCK and ROWLOCK - in Part 2!

  • Read Part 2!



  • ASP.NET [1.x] [2.0] | ASPMessageboard.com | ASPFAQs.com | Advertise | Feedback | Author an Article